1,926 research outputs found

    Modulation and coding technology for deep space and satellite applications

    Get PDF
    Modulation and coding research and development at the Jet Propulsion Laboratory (JPL) currently emphasize Deep Space Communications Systems and advanced near earth Commercial Satellite Communications Systems. The Deep Space Communication channel is extremely signal to noise ratio limited and has long transmission delay. The near earth satellite channel is bandwidth limited with fading and multipath. Recent code search efforts at JPL have found a long constraint, low rate convolutional code (15, 1/6) which, when concatenated with a ten bit Reed-Solomon (RS) code, provides a 2.1 dB gain over that of the Voyager spacecraft - the current standard. The new code is only 2 dB from the theoretical Shannon limit. A flight qualified version of the (15, 1/6) convolutional encoder was implemented on the Galileo Spacecraft to be launched later this year. An L-band mobile link, use of the Ka-band for personal communications, and the development of subsystem technology for the interconnection of satellite resources by using high rate optical inter-satellite links are noted

    Gait characteristics of subjects with chronic fatigue syndrome and controls at self-selected and matched velocities

    Get PDF
    Background: Gait abnormalities have been reported in individuals with Chronic Fatigue Syndrome (CFS) however no studies exist to date investigating the kinematics of individuals with CFS in over-ground gait. The aim of this study was to compare the over-ground gait pattern (sagittal kinematics and temporal and spatial) of individuals with CFS and control subjects at their self-selected and at matched velocities. Methods: Twelve individuals with CFS and 12 matched controls participated in the study. Each subject walked along a 7.2 m walkway three times at each of three velocities: self-selected, relatively slow (0.45 ms-1) and a relatively fast (1.34 ms-1). A motion analysis system was used to investigate the sagittal plane joint kinematics and temporal spatial parameters of gait. Results: At self-selected velocity there were significant differences between the two groups for all the temporal and spatial parameters measured, including gait velocity (P = 0.002). For the kinematic variables the significant differences were related to both ankles during swing and the right ankle during stance. At the relatively slower velocity the kinematic differences were replicated. However, the step distances decreased in the CFS population for the temporal and spatial parameters. When the gait pattern of the individuals with CFS at the relatively fast walking velocity (1.30 ± 0.24 ms-1) was compared to the control subjects at their self-selected velocity (1.32 ± 0.15 ms-1) the gait pattern of the two groups was very similar, with the exception of both ankles during swing. Conclusion: The self-selected gait velocity and/or pattern of individuals with CFS may be used to monitor the disease process or evaluate therapeutic intervention. These differences may be a reflection of the relatively low self-selected gait velocity of individuals with CFS rather than a manifestation of the condition itself

    An additional study and implementation of tone calibrated technique of modulation

    Get PDF
    The Tone Calibrated Technique (TCT) was shown to be theoretically free from an error floor, and is only limited, in practice, by implementation constraints. The concept of the TCT transmission scheme along with a baseband implementation of a suitable demodulator is introduced. Two techniques for the generation of the TCT signal are considered: a Manchester source encoding scheme (MTCT) and a subcarrier based technique (STCT). The results are summarized for the TCT link computer simulation. The hardware implementation of the MTCT system is addressed and the digital signal processing design considerations involved in satisfying the modulator/demodulator requirements are outlined. The program findings are discussed and future direction are suggested based on conclusions made regarding the suitability of the TCT system for the transmission channel presently under consideration

    DSN G/T(sub op) and telecommunications system performance

    Get PDF
    Provided here is an intersystem comparison of present and evolving Deep Space Network (DSN) microwave receiving systems. Comparisons of the receiving systems are based on the widely used G/T sub op figure of merit, which is defined as antenna gain divided by operating system noise temperature. In 10 years, it is expected that the DSN 32 GHz microwave receiving system will improve the G/T sub op performance over the current 8.4 GHz system by 8.3 dB. To compare future telecommunications system end-to-end performance, both the receiving systems' G/T sub op and spacecraft transmit parameters are used. Improving the 32 GHz spacecraft transmitter system is shown to increase the end-to-end telecommunications system performance an additional 3.2 dB, for a net improvement of 11.5 dB. These values are without a planet in the field of view (FOV). A Saturn mission is used for an example calculation to indicate the degradation in performance with a planet in the field of view

    Proceedings of the Second International Mobile Satellite Conference (IMSC 1990)

    Get PDF
    Presented here are the proceedings of the Second International Mobile Satellite Conference (IMSC), held June 17-20, 1990 in Ottawa, Canada. Topics covered include future mobile satellite communications concepts, aeronautical applications, modulation and coding, propagation and experimental systems, mobile terminal equipment, network architecture and control, regulatory and policy considerations, vehicle antennas, and speech compression

    Combined trellis coding and feedforward processing for MSS applications

    Get PDF
    The idea of using a multiple (more than two) symbol observation interval to improve error probability performance is applied to differential detection of trellis coded MPSK over a mobile satellite (fading) channel. Results are obtained via computer simulation. It is shown that only a slight increase (e.g., one symbol) in the length of the observation interval will provide a significant improvement in bit error probability performance both in AWGN and fading environments

    Stacking-induced fluorescence increase reveals allosteric interactions through DNA

    Get PDF
    From gene expression to nanotechnology, understanding and controlling DNA requires a detailed knowledge of its higher order structure and dynamics. Here we take advantage of the environment-sensitive photoisomerization of cyanine dyes to probe local and global changes in DNA structure. We report that a covalently attached Cy3 dye undergoes strong enhancement of fluorescence intensity and lifetime when stacked in a nick, gap or overhang region in duplex DNA. This is used to probe hybridization dynamics of a DNA hairpin down to the single-molecule level. We also show that varying the position of a single abasic site up to 20 base pairs away modulates the dye–DNA interaction, indicative of through-backbone allosteric interactions. The phenomenon of stacking-induced fluorescence increase (SIFI) should find widespread use in the study of the structure, dynamics and reactivity of nucleic acids

    The Detectability of AGN Cavities in Cooling-Flow Clusters

    Full text link
    Chandra X-ray Observatory has revealed X-ray cavities in many nearby cooling flow clusters. The cavities trace feedback from the central active galactic nulceus (AGN) on the intracluster medium (ICM), an important ingredient in stabilizing cooling flows and in the process of galaxy formation and evolution. But, the prevalence and duty cycle of such AGN outbursts is not well understood. To this end, we study how the cooling is balanced by the cavity heating for a complete sample of clusters (the Brightest 55 clusters of galaxies, hereafter B55). In the B55, we found 33 cooling flow clusters, 20 of which have detected X-ray bubbles in their ICM. Among the remaining 13, all except Ophiuchus could have significant cavity power yet remain undetected in existing images. This implies that the duty cycle of AGN outbursts with significant heating potential in cooling flow clusters is at least 60 % and could approach 100 %, but deeper data is required to constrain this further.Comment: 4 pages, 2 figures; to appear in the proceedings of "The Monsters' Fiery Breath", Madison, Wisconsin 1-5 June 2009, Eds. Sebastian Heinz & Eric Wilcots; added annotation to the figur

    Jet Interactions with the Hot Halos of Clusters and Galaxies

    Get PDF
    X-ray observations of cavities and shock fronts produced by jets streaming through hot halos have significantly advanced our understanding of the energetics and dynamics of extragalactic radio sources. Radio sources at the centers of clusters have dynamical ages between ten and several hundred million years. They liberate between 1E58-1E62 erg per outburst, which is enough energy to regulate cooling of hot halos from galaxies to the richest clusters. Jet power scales approximately with the radio synchrotron luminosity to the one half power. However, the synchrotron efficiency varies widely from nearly unity to one part in 10,000, such that relatively feeble radio source can have quasar-like mechanical power. The synchrotron ages of cluster radio sources are decoupled from their dynamical ages, which tend to be factors of several to orders of magnitude older. Magnetic fields and particles in the lobes tend to be out of equipartition. The lobes may be maintained by heavy particles (e.g., protons), low energy electrons, a hot, diffuse thermal gas, or possibly magnetic (Poynting) stresses. Sensitive X-ray images of shock fronts and cavities can be used to study the dynamics of extragalactic radio sources.Comment: 10 pages, 3 figures, invited review, "Extragalactic Jets: Theory and Observation from Radio to Gamma Ray, held in Girdwood, Alaska, U.S.A. 21-24 May, 2007, minor text changes; one added referenc

    A Powerful AGN Outburst in RBS 797

    Full text link
    Utilizing ∼50\sim 50 ks of Chandra X-ray Observatory imaging, we present an analysis of the intracluster medium (ICM) and cavity system in the galaxy cluster RBS 797. In addition to the two previously known cavities in the cluster core, the new and deeper X-ray image has revealed additional structure associated with the active galactic nucleus (AGN). The surface brightness decrements of the two cavities are unusually large, and are consistent with elongated cavities lying close to our line-of-sight. We estimate a total AGN outburst energy and mean jet power of ≈3−6×1060\approx 3 - 6 \times 10^{60} erg and ≈3−6×1045\approx 3 - 6 \times 10^{45} erg s−1^{-1}, respectively, depending on the assumed geometrical configuration of the cavities. Thus, RBS 797 is apparently among the the most powerful AGN outbursts known in a cluster. The average mass accretion rate needed to power the AGN by accretion alone is ∼1M⊙\sim 1 M_{\odot} yr−1^{-1}. We show that accretion of cold gas onto the AGN at this level is plausible, but that Bondi accretion of the hot atmosphere is probably not. The BCG harbors an unresolved, non-thermal nuclear X-ray source with a bolometric luminosity of ≈2×1044\approx 2 \times 10^{44} erg s−1^{-1}. The nuclear emission is probably associated with a rapidly-accreting, radiatively inefficient accretion flow. We present tentative evidence that star formation in the BCG is being triggered by the radio jets and suggest that the cavities may be driving weak shocks (M∼1.5M \sim 1.5) into the ICM, similar to the process in the galaxy cluster MS 0735.6+7421.Comment: Accepted to ApJ; 20 pages, 11 low-resolution figure
    • …
    corecore